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Countable Borel equivalence relations

A Borel equivalence relation is an equivalence relation E on a Polish space
X which is Borel as a subset of E ⊆ X 2.
A countable Borel equivalence relation (CBER) is one where every class is
countable.
Every CBER comes from the following example:
Let Γ be a countable group, acting continuously on a Polish space X .
Denote by EX

Γ the orbit equivalence relation of the action Γ ↷ X , where
x and y are related iff they are in the same orbit.
To remove uninteresting edge cases, we will only look at aperiodic CBERs,
that is, only those where every class is infinite.
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Automorphisms of CBERs

Let E be an aperiodic CBER on a Polish space X .
A Borel map ϕ : X → X is an automorphism of E if we have

x E y ⇐⇒ ϕ(x) E ϕ(y)

for every x , y ∈ X .
We denote by AutB(E ) the automorphism group of E .
Every ϕ ∈ AutB(E ) descends to a Borel permutation ϕ̃ of X/E , defined by

ϕ̃([x ]E ) = [ϕ(x)]E .

(A function X/E → Y /F is Borel if it lifts to a Borel map X → Y or
equivalently, if the set {(x , y) ⊆ X × Y : f ([x ]E ) = [y ]F} is a Borel subset
of X × Y ).
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The inverse problem

Does every Borel permutation of X/E come from an automorphism of E?
No! Because Borel bireducibility is weaker than Borel isomorphism:
Let E = E0 ⊕ Et on 2ω ⊕ 2ω, and let f be any Borel bireduction from E0 to
Et .
Then f induces a Borel permutation of (2ω ⊕ 2ω)/E , but it can’t lift to an
automorphism of E , since this would give a Borel isomorphism from E0 to
Et .
If E is compressible, this issue doesn’t arise.
But there are probably non-compressible examples too.
If there is a free p.m.p. action Γ ↷ (X , µ) satisfying some conditions(e.g. Γ
is cohopfian, the action is cocycle superrigid, etc.)then every Borel
permutation on X/Γ lifts.
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More general setup: Group actions

Let E be an aperiodic CBER.
Let Γ be a countable group.

Problem
When can a Borel action of Γ ↷ X/E be lifted to a Borel action Γ ↷ X?

(An action Γ ↷ X/E is Borel if it acts by Borel permutations of X/E )
Let E∨Γ be the CBER generated by E and Γ:

x E∨Γ y ⇐⇒ ∃γ(γ · [x ]E = [y ]E )

We need an (E ,E∨G )-link.
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Links

Let (E ,F ) be a pair of CBERs with E ⊆ F .
An (E, F)-link is a CBER L ⊆ F such that on each F -class, every L-class
meets every E -class exactly once.

Proposition

Let Γ ↷ X/E be a Borel action. If there is an (E ,E∨Γ)-link, then the action
Γ ↷ X/E lifts.

If L is the link, let ϕ(x) be the unique element of [x ]L ∩ f ([x ]E ).
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Compressible CBERs

Theorem (FKS)
Let (E ,F ) be compressible CBERs. Then there is an (E ,F )-link.

Corollary
Let E be a compressible CBER. Then every action Γ ↷ X/E can be lifted
to an action Γ ↷ X .

In particular, we can always lift on a comeager set:

Corollary (FKS)
For every aperiodic CBER E and every action Γ ↷ X/E , there is a
comeager E∨Γ-invariant subset Y ⊆ X on which the action Γ ↷ Y /E lifts.

Forte Shinko (Caltech) Lifts of Borel actions on quotient spaces McGill DDC seminar 7 / 20



Outer automorphisms

Let OutB(E ) denote the group of Borel permutations of X/E which lift to
an automorphism of E .
An alternative construction of OutB(E ): OutB(E ) is the quotient
AutB(E )/ InnB(E ), where InnB(E ) is the inner automorphism group of
E .(Also called the full group of E and denoted [E ]).

1 → InnB(E ) → AutB(E ) → OutB(E ) → 1

An automorphism ϕ of E is inner if it satisfies x E ϕ(x) for every x .
So OutB(E ) is called the outer automorphism group.
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Lifting outer actions

In general, there are actions on X/E which cannot be lifted (in which case
E is not compressible).
Restrict to outer actions Γ ↷ X/E , i.e. actions by elements of OutB(E ),
i.e. homomorphisms Γ → OutB(E ).

Problem
When can we solve the following lifting problem?

AutB(E )

Γ OutB(E )
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An example

Let Γ be a countable group, and let N ◁ Γ.
Let Γ ↷ X be a Borel action, and let E be the equivalence relation induced
by the restriction N ↷ X .
Then there is an outer action Γ → OutB(E ) given by

g · [x ]E = [g · x ]E .

This descends to a outer action Γ/N → OutB(E ).
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Some groups where every outer action lifts

A tautology: Every outer action Z → OutB(E ) lifts (for any CBER E ).
More generally, every outer action Fn → OutB(E ) lifts.
We shift our focus to the class of (countable) groups for which every outer
action lifts.
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Finite groups

Theorem (FKS)
Let Γ be a finite group. Then every outer action of Γ lifts.

Theorem (FKS)
Let E ◁ F be a finite index extension of CBERs. Then there is an (E ,F )-link.

We say E ◁ F (E is a normal subequivalence relation of F ) if F = E∨Γ for
some outer action Γ → OutB(E ).
Use maximal fsr.
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Amalgamated products of finite groups

Lift Γ ∗Λ ∆ → OutB(E ).
Attempt:

1 Lift the Λ-action.
2 Then lift the Γ-action preserving the Λ-action, and similarly for ∆.

How to do the second step? Use links:

Theorem
Let E ⊆ F ⊆ F ′ be CBERs such that E has finite index in F ′ and E ◁ F ′.
Then every (E ,F )-link extends to an (E ,F ′)-link.

This uses the cancellation law for cardinal algebras.
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Treeability

Let G be the class of countable groups for which every outer action lifts.

Theorem (Frisch-Kechris-S)
Every group in G is treeable.

Treeable group: admits a free p.m.p. action on a standard Borel space with
treeable orbit equivalence relation.
Groups which are not treeable:

SL3(Z). More generally, infinite property (T) groups.
Z× F2. More generally, Γ×∆ with Γ infinite and ∆ non-amenable.

Problem
Is every treeable group in G?
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Proof of treeability

Theorem (Frisch-Kechris-S)
Every group in G is treeable.

Suppose every outer action of Γ lifts.
Write Γ = F∞/N for some N ◁ F∞.
Fix a free p.m.p. action F∞ ↷ (X , µ), for example, the Bernoulli shift 2F∞

(this is treeable).
Let E be the equivalence relation induced by N ↷ X .
This induces an outer action Γ → OutB(E ).
There is a lift Γ → AutB(E ).
This action of Γ on X is free, p.m.p. and treeable.
So Γ is treeable.
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Groups which work

G: the class of countable groups for which every outer action lifts.

Theorem (Frisch-Kechris-S)
G contains:

1 all free groups;
2 all amenable groups.
3 all amalgamated products of finite groups;
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Amenable groups

Amenable group: Countable group with a Følner sequence (Fn).
Følner sequence: for every g ∈ Γ,

|Fn △ gFn|
|Fn|

→ 0

The Fn are “invariant as n → ∞”.
Some amenable groups:

Finite groups.
Abelian groups.
Groups constructed from those (e.g. solvable groups).
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Amenable groups: quasi-tilings

Very important tool: quasi-tilings (Ornstein-Weiss)
Generalized many results about actions of Z to amenable groups, e.g.
ergodic theorem, entropy.
Idea: There’s a finite set of tiles (finite subsets of Γ) and the group can be
“disjointly” tiled with them.
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Amenable groups: lifting outer actions

Strategy due to Feldman-Sutherland-Zimmer.
We want to lift an outer action Γ → OutB(E ).
Find a set A0 of tiles.
Find a set A1 of tiles, each one quasi-tiled by A0.
Find a set A2 of tiles, each one quasi-tiled by A1, etc.
Define the action of Γ for elements of A0, then A1, etc.
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Thank you!
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