Lifts of Borel actions on quotient spaces (joint with Joshua Frisch and Alexander Kechris)

Forte Shinko

California Institute of Technology

McGill DDC seminar

Countable Borel equivalence relations

A Borel equivalence relation is an equivalence relation E on a Polish space X which is Borel as a subset of $E \subseteq X^2$.

A **countable** Borel equivalence relation (CBER) is one where every class is countable.

Every CBER comes from the following example:

Let Γ be a countable group, acting continuously on a Polish space X.

Denote by E_{Γ}^X the **orbit equivalence relation** of the action $\Gamma \curvearrowright X$, where x and y are related iff they are in the same orbit.

To remove uninteresting edge cases, we will only look at **aperiodic** CBERs, that is, only those where every class is infinite.

Automorphisms of CBERs

Let *E* be an aperiodic CBER on a Polish space *X*. A Borel map $\phi : X \to X$ is an **automorphism** of *E* if we have

 $x E y \iff \phi(x) E \phi(y)$

for every $x, y \in X$. We denote by $\operatorname{Aut}_B(E)$ the automorphism group of E. Every $\phi \in \operatorname{Aut}_B(E)$ descends to a Borel permutation $\widetilde{\phi}$ of X/E, defined by

$$\widetilde{\phi}([x]_E) = [\phi(x)]_E.$$

(A function $X/E \to Y/F$ is **Borel** if it lifts to a Borel map $X \to Y$ or equivalently, if the set $\{(x, y) \subseteq X \times Y : f([x]_E) = [y]_F\}$ is a Borel subset of $X \times Y$).

The inverse problem

Does every Borel permutation of X/E come from an automorphism of E? **No!** Because Borel bireducibility is weaker than Borel isomorphism: Let $E = E_0 \oplus E_t$ on $2^{\omega} \oplus 2^{\omega}$, and let f be any Borel bireduction from E_0 to E_t .

Then f induces a Borel permutation of $(2^{\omega} \oplus 2^{\omega})/E$, but it can't lift to an automorphism of E, since this would give a Borel isomorphism from E_0 to E_t .

If E is compressible, this issue doesn't arise.

But there are probably non-compressible examples too.

If there is a free p.m.p. action $\Gamma \curvearrowright (X, \mu)$ satisfying some conditions(e.g. Γ is cohopfian, the action is cocycle superrigid, etc.)then every Borel permutation on X/Γ lifts.

More general setup: Group actions

Let E be an aperiodic CBER.

Let Γ be a countable group.

Problem

When can a Borel action of $\Gamma \curvearrowright X/E$ be lifted to a Borel action $\Gamma \curvearrowright X$?

(An action $\Gamma \curvearrowright X/E$ is **Borel** if it acts by Borel permutations of X/E) Let $E^{\vee \Gamma}$ be the CBER generated by E and Γ :

$$x E^{\vee \Gamma} y \iff \exists \gamma (\gamma \cdot [x]_E = [y]_E)$$

We need an $(E, E^{\vee G})$ -link.

Links

Let (E, F) be a pair of CBERs with $E \subseteq F$. An **(E, F)**-link is a CBER $L \subseteq F$ such that on each *F*-class, every *L*-class meets every *E*-class exactly once.

Proposition

Let $\Gamma \curvearrowright X/E$ be a Borel action. If there is an $(E, E^{\vee \Gamma})$ -link, then the action $\Gamma \curvearrowright X/E$ lifts.

If L is the link, let $\phi(x)$ be the unique element of $[x]_L \cap f([x]_E)$.

Compressible CBERs

Theorem (FKS)

Let (E, F) be compressible CBERs. Then there is an (E, F)-link.

Corollary

Let E be a compressible CBER. Then every action $\Gamma \curvearrowright X/E$ can be lifted to an action $\Gamma \curvearrowright X$.

In particular, we can always lift on a comeager set:

Corollary (FKS)

For every aperiodic CBER E and every action $\Gamma \curvearrowright X/E$, there is a comeager $E^{\vee\Gamma}$ -invariant subset $Y \subseteq X$ on which the action $\Gamma \curvearrowright Y/E$ lifts.

Outer automorphisms

Let $\operatorname{Out}_B(E)$ denote the group of Borel permutations of X/E which lift to an automorphism of E.

An alternative construction of $\operatorname{Out}_B(E)$: $\operatorname{Out}_B(E)$ is the quotient $\operatorname{Aut}_B(E)/\operatorname{Inn}_B(E)$, where $\operatorname{Inn}_B(E)$ is the **inner automorphism group** of *E*.(Also called the **full group** of *E* and denoted [*E*]).

$$1 \to \mathsf{Inn}_B(E) \to \mathsf{Aut}_B(E) \to \mathsf{Out}_B(E) \to 1$$

An automorphism ϕ of E is inner if it satisfies $x \in \phi(x)$ for every x. So $Out_B(E)$ is called the **outer automorphism group**.

Lifting outer actions

In general, there are actions on X/E which cannot be lifted (in which case *E* is not compressible).

Restrict to outer actions $\Gamma \curvearrowright X/E$, i.e. actions by elements of $\operatorname{Out}_B(E)$, i.e. homomorphisms $\Gamma \to \operatorname{Out}_B(E)$.

Problem

When can we solve the following lifting problem?

An example

Let Γ be a countable group, and let $N \triangleleft \Gamma$.

Let $\Gamma \curvearrowright X$ be a Borel action, and let *E* be the equivalence relation induced by the restriction $N \curvearrowright X$.

Then there is an outer action $\Gamma \rightarrow \text{Out}_B(E)$ given by

$$g \cdot [x]_E = [g \cdot x]_E$$

This descends to a outer action $\Gamma/N \rightarrow \text{Out}_B(E)$.

Some groups where every outer action lifts

A tautology: Every outer action $\mathbb{Z} \to \operatorname{Out}_B(E)$ lifts (for any CBER E). More generally, every outer action $F_n \to \operatorname{Out}_B(E)$ lifts. We shift our focus to the class of (countable) groups for which every outer action lifts.

Finite groups

Theorem (FKS)

Let Γ be a finite group. Then every outer action of Γ lifts.

Theorem (FKS)

Let $E \triangleleft F$ be a finite index extension of CBERs. Then there is an (E, F)-link.

We say $E \triangleleft F$ (E is a **normal** subequivalence relation of F) if $F = E^{\vee \Gamma}$ for some outer action $\Gamma \rightarrow \text{Out}_B(E)$. Use **maximal fsr**.

Amalgamated products of finite groups

```
Lift \Gamma *_{\Lambda} \Delta \rightarrow \operatorname{Out}_{B}(E).
Attempt:
```

- **1** Lift the Λ-action.
- **2** Then lift the Γ -action preserving the Λ -action, and similarly for Δ .

How to do the second step? Use links:

Theorem

Let $E \subseteq F \subseteq F'$ be CBERs such that E has finite index in F' and $E \triangleleft F'$. Then every (E, F)-link extends to an (E, F')-link.

This uses the cancellation law for cardinal algebras.

Treeability

Let ${\mathcal G}$ be the class of countable groups for which every outer action lifts.

Theorem (Frisch-Kechris-S)

Every group in G is treeable.

Treeable group: admits a free p.m.p. action on a standard Borel space with treeable orbit equivalence relation.

Groups which are not treeable:

- $SL_3(\mathbb{Z})$. More generally, infinite property (T) groups.
- $\mathbb{Z} \times F_2$. More generally, $\Gamma \times \Delta$ with Γ infinite and Δ non-amenable.

Problem

Is every treeable group in G?

Theorem (Frisch-Kechris-S)

Every group in G is treeable.

Suppose every outer action of Γ lifts. Write $\Gamma = F_{\infty}/N$ for some $N \triangleleft F_{\infty}$. Fix a free p.m.p. action $F_{\infty} \curvearrowright (X, \mu)$, for example, the Bernoulli shift $2^{F_{\infty}}$ (this is treeable). Let *E* be the equivalence relation induced by $N \curvearrowright X$. This induces an outer action $\Gamma \rightarrow \text{Out}_B(E)$. There is a lift $\Gamma \rightarrow \text{Aut}_B(E)$. This action of Γ on *X* is free, p.m.p. and treeable. So Γ is treeable.

Groups which work

 $\mathcal{G} {:}$ the class of countable groups for which every outer action lifts.

Theorem (Frisch-Kechris-S)

G contains:

- all free groups;
- all amenable groups.
- I amalgamated products of finite groups;

Amenable groups

Amenable group: Countable group with a Følner sequence (F_n) . **Følner sequence**: for every $g \in \Gamma$,

$$\frac{|F_n \bigtriangleup gF_n|}{|F_n|} \to 0$$

The F_n are "invariant as $n \to \infty$ ". Some amenable groups:

- Finite groups.
- Abelian groups.
- Groups constructed from those (e.g. solvable groups).

Amenable groups: quasi-tilings

Very important tool: quasi-tilings (Ornstein-Weiss)

Generalized many results about actions of $\mathbb Z$ to amenable groups, e.g. ergodic theorem, entropy.

Idea: There's a finite set of **tiles** (finite subsets of Γ) and the group can be "disjointly" tiled with them.

Amenable groups: lifting outer actions

Strategy due to Feldman-Sutherland-Zimmer. We want to lift an outer action $\Gamma \rightarrow \text{Out}_B(E)$. Find a set \mathcal{A}_0 of tiles. Find a set \mathcal{A}_1 of tiles, each one quasi-tiled by \mathcal{A}_0 . Find a set \mathcal{A}_2 of tiles, each one quasi-tiled by \mathcal{A}_1 , etc. Define the action of Γ for elements of \mathcal{A}_0 , then \mathcal{A}_1 , etc.

Thank you!